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An artljicial  neural network moakl  (Am) has been developed to predict the aero-
sol concentration distribution resulting @om the volley jiring  of screening grenades for
armoured vehicles. i%e akzta were collected during trial jirings  using the Defence Re-
search Establishment Valcartier  (DREV) Laser Cloud Mapper (LCM),  a scanning LIDAR
device operating at 1.06 pm. l’%e ANN model was able to predict volumetric extinction
coefficients, and thus aerosol concentrations, to within an average error of 1.78 for a
valialztion  set of 1103 &ta points. A basic Gaussian plume modd  was also used to gener-
ate predictions over the same valiahtion  set, but the average error was 14.5, almost an
order of magnitudk  worse than the ANN predictions. An examination of the extinction
coef~cients along a line-of-sight normal to the aerosol cloud revealed a bimoald distribu-
tion, which was also predicted by the ANN modd  The Gaussian model predicted a
monomoald  distribution.

As the al.zta  set used for training, testing and vali~tion  was limited to the firing
of two volleys of dl~ferent  composite grenades (phosphorus and metal ji’ake),  the ANN
model can not be consiakred aa%quate  for general application, but rather serves as a
proof of principle that neural networks are capable of predicting the spatial and tempo-
ral distribution of aerosol particles better than conventional Gaussian models. A pro-
gram offirther alzta  collection at DREV and subsequent arudysis  using ANNs is planned
for the fiture.

Introduction

For some years, Defence Re-
search Establishment Valcartier has used
a scanning light detection and ranging
(LIDAR), called a Laser Cloud Mapper
(LCM)l to measure the attenuation of
laser pulses caused by various aerosols
under consideration for military use.z3>4
The backscatter data have been con-

verted to volume extinction coefficient
maps and give an indication of the con-
centration distribution of the obscurant
aerosols. Although these dat~ collected

. .

over several years and for a wide variety
of aerosols, were mainly used to assess
obscuratio~ they also present itiorma-
tion on the dispersion of aerosols fi-om a
point source which emits over a rela-
tively short duration (~60 see). It is sig-



nificant to note that obscuring grenades,
which form a large portion of the data
set, are neither instantaneous (p.@ nor
continuous (plume), but rather somewhat
transient, with a short burning/emission
time.

The classical prediction models
are the Gaussian puff for instantaneous
emissions and the Gaussian plume for
continuous emissions. This paper exam-
ines the adequacy of Gaussian models to
predict the aerosol dispersion measured
by the LCM and to compare these to a
model developed using artificial neural
networks (ANNs), an aspect of artificial
intelligence and a relatively new ap-
proach to modelling.

Gaussian Modelling

The two Gaussian models, the
plume and the puff, are based on diffi-
sion theory, with the concentration de-
creasing exponentially from the centre-
line or centre.s The more widely used,
and thus the better characterized of the
two is the plume model, which has a va-
riety of applications for aerosol and va-
pour dispersion. The general Gaussian
plume equation describing aerosol con-
centration, C (g/m3), from a continuous
source, is
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where Q is the source/production rate
(g/s), cq and u= are standard deviations in
azimuth and elevation respectively (m), y
and z are respective azimuthal and verti-
cal distances from the centreline (m), h is

the distance of the plume centreline
above ground (m) and u is the wind
speed (m/s) taken as being along the x
axis.

A Gaussian distribution, by defi-
nition, has two fitting parameters, a mean
(in this case the centreline concentration
provided by the first term on the RHS of
the Eq. 1) and a standard deviation (here
contained in the crY and o. terms). It is
noteworthy that for the aerosol disper-
sion application these standard devia-
tions are determined fi-om the appropri-
ate Pasquill stability categories, which in
turn are fi.mctions of distance fi-om the
source (x), cloud cover, time of day, etc.
The basic assumptions inherent in the
Gaussian plume model are constant emis-
sioq conservation of mass, (no ground
deposition), steady wind and that the re-
sults are time averaged. Such parameters
as ambient temperature, relative humid-
ity, surface roughness as well as ground
deposition any chemical kinetics or
aerosol/atmosphere reactions are not ex-
plicitly or even implicitly included in the
basic model, although additional terms
can be added. Two fi.u-ther limitations are
that the Gaussian plume model predicts
rather poorly less than 100 m from the
source and that the qualhy of predictions
varies inversely with distance fi-om the
centreline.’

Although some of the limitations
mentioned above could be addressed by
physically-based or semi-empirical fit-
tings (notwithstanding that the CJY and (sZ
values are themselves semi-empirical in . .
nature), it was decided to use the general
Gaussian plume model as the basis of
comparison for ANN models.

The instantaneous Gaussian puff
model, which intuitively should provide a
better prediction of aerosol dispersion
from screening grenades than the con-



tinuous plume model, was found to per-
form not nearly as well. This is probably
due to the fact that the wider use of the
plume model has led to much better
characterizations of the standard devia-
tions (OY and o,) values used for predic-
tions.g

Artificial Neural Network Models

Artificial neural networks are
considered a branch of artificial intelli-
gence and found their origins in psy-
chologists attempts at modelling the
brain’s fimctions. The seminal work on
the back propagation paradigm the most
widely used of ANN models, was only
published in 1986.9

Basically, an artificial neural net-
work takes raw input dat~ maps it into
an input space, and then introduces it
into the network. The network itself is an
interconnection of nodes or processing
elements (also sometimes called artificial
neurons) which are arranged in layers
(Fig. 1). The input layer contains a node
for each variable, with each complete set
of variables describing a specific input
vector. For example, each measured
value of volumetric extinction coefficient
has a corresponding vector of measured
experimental variables and parameters. In
addition to the input variables, the input
layer also contains a bias node which is
permanently assigned a value of 1 and is
analogous to an electrical ground. Its
presence was found to aid convergence
during training.

Each node in the input layer is
connected to each node in the next layer,
which is usually called the hidden layer.
The scaled (mapped) input values each
have a weight applied to them before the
values are introduced into the hidden
layer. At each hidden node, the weighted

inputs are summed and then mapped
back into the range -1 to +1 by the appli-
cation of a hyperbolic tangent transfer
fimction before being passed to the out-
put layer. Conventionally, there are one
or two hidden layers, with the intercon-
nections between nodes in the two hid-
den layers being analogous to those be-
tween the input and first hidden layer.

output
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Fig. 1. Typical architecture of a back
propagation neural network.

AgaiA each hidden node in the
final hidden layer, as well as the bias
node, is connected to each output node,
with the process of applying weights to
each connectio~ the weighted inputs
being summed and then having a transfer
iimction applied being repeated. The
output of the output node(s) must then
be mapped back into real-world value(s).

To initial scaling of input vari-
ables, is effected by:

where Vi is the unscaled iti input value,
~ is the maximum value of the range of
the iti input, mi is the minimum value of
the range of the iti input and xi is the
scaled iti input value.



The scaled inputs (which can also
be considered as the outputs of the input
layer) have the appropriate connecting
weights, wji applied. These weighted
outputs become the inputs for the nodes
of the first hidden layer, where they are
summed and then transformed using a
transfer ii.mction, as outlined by the fol-
lowing equations:

Ij ‘~ Wji Xi ,
i=(l

(3)

where wji is the connection weight be-
tween the j* hidden node and the i* input
node, and Ij is the sum of the weighted
inputs to the j* hidden node, and

- I,ell  –e

Yj = tanh(lj) =  e], + e-J, > (4)

where yj is the output of the jti hidden
node.

This process is repeated for the
second hidden layer and the output layer.
The output value from the output layer
must then be mapped back to provide a
real value for the logarithm of the volu-
metric extinction coefficient. In fact, this
process is essentially the reverse of the
initial scaling described in Eq.2, although
it is simplified by only having to consider
the mapping of one variable. This is ac-
complished by

~ = (M -m)z+(Rm-rit4)  ($
R – r

where C is the predicted value of the
logarithm of the volumetric extinction
coefficient corresponding to the specific
input vector defined by X1,X2.. .xg, M and
m are the real (measured) maximum and

minimum of the output variable (log CT), z
is the network output value, whose range
falls between the maximum and minimum
values R and r (for the tanh tlmctioq
these values are taken as 0.8 and -0.8
respectively).

At the start of the training proc-
ess, the connecting weights throughout
the network are given random values.
When the output value is generated, it is
compared to the corresponding actual
measured value. The difference between
these two values is considered the global
error and is propagated backwards
through the network. An iterative proc-
ess is carried out of adjusting the con-
necting weights to minimize the global
error. A gradient descent optimization is
used to adjust each of the connecting
weights locally. Once the global error has
been minimized over the whole training
set, the weights can be fixed and the
network can be used to make blind pre-
dictions.

A trained ANN lends itself par-
ticularly well to incorporation into a
spreadsheet which can be driven by a
macro. It can also be incorporated into
computer codes to provide real-time de-
termination of the extinction coefficients
and thus aerosol concentrations or
transmittances, as required.

Data Collection

Some of the trials involving the
LCM include Smoke Week IXIO,
SOCMET Winterll and Summer12.  The
data used in this study were for two ex- -

perimental screening grenades, each
composed of a mix of red phosphorus
(N) and metal flake. The LIDAR was
situated some 400 m from the cloud
centreline so that the field of view was
roughly perpendicular to the longitudinal



axis of the cloud. The grenades were 66
mm in diameter and designed for ar-
moured fighting vehicle launchers. In
each case, 12 grenades were launched
together, with their impact over an arc of
about 70 m. The red phosphorus was
actually ignited in the air during flight
through the launch arc. The metal flake
was also dispersed while the grenades
were in the air (at an elevation of some
10 m). As the grenades continued to burn
and emit smoke tier the rubberized RP
particles had reached earth the source
was considered to be a ground release
(h=O in Eq. 1). Even though this was not
strictly true, it was not felt to contribute
significantly to any modelling errors, as
the data for the modelling were not col-
lected until a coherent cloud had formed.

The scanning LIDAR is based on
a 1.06 pm NdYAG laser. Although the
settings are adjustable, those used for the
trial from which the data were collected
were such that, for one complete scan or
cycle, the LCM traversed the 90° field of
view six times, making 66 shots per trav-
erse (Fig.2). The vertical field of view
was 2°. The LCM measures the
backscatter fi-om the laser pulses, with a
sampling frequency of 100 MHz. The
resolution available was 1.5 m along the
shot axis, 9.5 m at 400 m in azimuth and
2.8 m at 400 m in elevation. A typical
scan would produce some 198 000 data
points (backscatter values).

Electromagnetic attenuation by
atmospheric or artificial aerosols can be
characterized by the Beer-Lambert Law:

I

~=e
where I& is the
the path length L

- a C L
> (6)

transmittance through
(m). The mass extinc-

tion coefficient a (m2/g) can be consid-
ered the removal (scattering and absorp-
tion) cross section per unit mass and
must be determined empirically. It is a
fi.mction of aerosol particle size distribu-
tio~ particle shape, and electromagnetic
wavelength. 13 The product aC (m-l) can
be considered as the volumetric extinc-
tion coefficient, o, and is the value that is
generated by the LCM support software.
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Fig. 2. Schematic of the sweep pattern of
the DREV Laser Cloud Mapper.

A weakness inherent in the LCM
is that aerosol clouds may be sufficiently
dense to provide near-complete extinc-
tion of the laser pulses. In such cases,
only the near side of the cloud (closest to
the LCM) will provide reflections which
can be converted to extinction coeffi-
cients or concentrations. For this reason,
more confidence is placed in measure-
ments from sparse clouds than from ones
which are optically dense.

Data Handling

The backscatter signal strengths
collected by the LCM are converted by
support software to volume extinction
coefficient values. With the vast amount
of data available per six-sweep sctq lo-
cating extinction values for the aerosol
cloud was not straightforward. A thresh-



old value of 2.00x104 was used as a fil-
ter, and the backscatter resulting from
reflections from the natural background,
such as trees and terrain features, had to
be removed. The coordinate system was
defined by having the x axis pass through
the cloud centroid, with the origin of the
cartesian coordinate system determined
as the cloud centroid for the first scan.

In additio~ the data had to be
arranged into a format suitable for train-
ing and testing ANNs and in validating
both the ANN and Gaussian models. The
vahdation set was selected as the last
scan of one of the tests and was used
only for blind validatio~ i.e., it was not
used for training or testing. This set
contained 1103 data points.

The extinction coefficients avail-
able for analysis ranged over four orders
of magnitude (10-1 to 104). Conse-
quently, a logarithmic transformation was
performed. Another adjustment was to
balance the distribution of the data points
over the range of extinction coefficients.
This was achieved by randomly choosing
points from the residual data set (less the
vflldation set) to fill a number of evenly
wide data sub-range brackets throughout
the available extinction coefficient range.
The purpose of this was to preclude an
inadvertent biasing of the ANN towards
any particular sub-range of values.

ANN Development

The choice of ANN paradigq
back propagation, was based on the wide
use and general success it has exhibited
in solving prediction problems. 14’15 The
version used was NeuralWare’s Neural-
Works Professional ll/Plusls with the
edbd or extended delta-bar-delta optio~
which included dynamic adjustments to
momentum and learning coefficients.

Another parameter investigated
during ANN training was in choosing the
input variables and parameters. The
choice was limited somewhat by the na-
ture of the data available, i.e., only two
tests were used, with both conducted
under relatively uniiiorm meteorological
conditions. Consequently, time of day
and temperature w-ere d-eemed insignifi-
cant. Further, specific details of the gre-
nades were not available, so obvious in-
puts to describe the aerosols produced,
such as total weight of aerosol dispersed,
the burn/source emission rate and parti-
cle size distributio~ were not included.
Also, such values as ambient tempera-
ture, barometric pressure, relative hu-
midity and thus chemical kinetics data
were not available and so were not con-
sidered. The variables actually considered
are contained in Table 1.

Table 1. Input variables for the artificial
neural network, with relative significance
determined by sensitivity analysis and
normalized to ‘most significant.

Input Variable or Relative
Parameter ! Sign@cance

Downwind distance (x)
Crosswind distance (y)
Wind velocity
Cloud deviation from
centreline
Type of grenade
Time from launch
Type of grenade
Vertical distance (z)
Pasauill categorv

1
.78
.35
.28

.24

.23

.22

.16

.05

The final area of ANN develop-
ment was the architecture of the net-
work. Here the choice was in the number
of hidden processing elements or nodes
and their arrangement into one or two
hidden layers. The optimal architecture



arrived at, after significant investigatio~
was 9-9-4-1, or nine input nodes, nine
nodes in the first hidden layer, four in the
second hidden layer and one node in the
output layer (logarithm of the volumet-
ric extinction coefficient). In general, the
fewer the number of hidden nodes the
better, as this forces the model to gener-
alize and not memorize. The larger num-
ber used in this application may well be
due to synergistic effects among some of
the inputs.

Model Performance

The metric chosen to assess
model pefiormance  was the average
relative error, E, of the validation set,
which was applied to both the Gaussian
and the ANN models. This is determined
by

+
E=x ‘“-*P , (7)

n Om

where ~Wi is the LCM-measured volu-
metric extinction coefficient (m-l) and ~P,i
is the model-predicted volumetric ex-
tinction coefficient (m-l).

A scatter plot of the Gaussian
plume model can be seen in Fig. 3. Per-
fect agreement between measurement
and prediction would be depicted by
points falling along a diagonal with a
slope of 1. It can be seen that most of the
data are overpredicted by the Gaussian
model while a significant number (the
points fllgned at the bottom) were un-
derpredicted. Here these data were arbi-
trarily assigned predicted values of -4.7,
so that they would be shown graphically
without greatly distorting the depiction
of the majority of the data points. In fact,
the points, in some cases, were several

orders of magnitude below the measured
values.

The relative error for the Gaus-
sian model was determined to be 14.5, or
almost 1.5 orders of magnitude, due
largely to the underpredictions at the
cloud extremities (Table 2). It is worth
noting that the Gaussian plume model is
the combination of 12 separate plume
models, one for each grenade launched.
It should also be noted that the puff
model was also investigated, but the pre-
dictions were not as good as those from
the plume model, probably because the
standard deviations are better character-
ized for the more common plume model.
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Fig. 3. Scatter plot of Gaussian plume
model predictions of logarithms of volu-
metric extinction coefficients vs loga-
rithm of LCM measured values for vali-
dation set of 1103 values.

Table 2. Comparison of average relative
errors of ANN and Gaussian plume pre-
dictions for the validation set. - -

Neural Gaussian
Network Plume

Error I 1.78 14.5



The perilormance of the ANN
model can be seen in Fig. 4. The data are
much better distributed about the ideal
line of slope 1. The relative error of 1.78
for the validation set is quite reasonable,
indicating that actual predicted values
are, on average, within a factor of 2 of
the measured values Table 2. This differ-
ence, of course, is much smaller (0.25)
when the logarithmic values are consid-
ered, as depicted in Fig. 4.
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Fig. 4. Scatter plot of artificial neural
network prediction of logarithm of
volumetric extinction coefficient vs loga-
rithm of LCM measured values for vali-
dation set.

Noteworthy also is the fact that
the ANN model does not predict extinc-
tion coefficients above about 0.04 m-l,
even though some measured values were
as high as 0.7 m-l. This is probably due
to the generalizing nature of the ANN,
which was trained on a paucity of data
above 0.1 m-l.

It should also be borne in mind
that the training, test and validation sets
were limited to two tests (i.e., two sepa-
rate volleys of 12 grenades each). Al-
though more data were available, there
was insufficient irdlormation on grenade
compositions and meteorological condi-

tions. Consequently only the two firings
were chosen for evaluatio~ and data
fi-om most of the tests conducted, which
could not be sufficiently characterized,
were not used.

The ANN model developed, the~
is not a generalized predktor of aerosol
dispersion. Rather, it is a proof of princi-
ple that an artificial neural networlq with
the inherent flexibility of choice of input
variables can provide a good prediction
of a fairly complex and chaotic phe-
nomeno~ the dispersion of aerosols in
the atmosphere.

Examination of the connecting
weight distribution of the ANN and con-
ducting a sensitivity analysis yields the
relative significance of the input vari-
ables, as shown in Table 1. Not surpris-
ingly, especially in light of the similarity
of the atmosphere conditions, the most
significant variables are spatial ones in
the ground plane. At the other extreme,
the Pasquill stability catego~, which for
one test was A-B and for the other was
B-C, had predictably little influence.
Similarly, the vertical distance above
ground had little influence, again proba-
bly due to the fact that a height of only
14m was covered by the LCM. The other
variables, the type switches which indi-
cated which grenade was used, the time
after launch and the degree of cloud me-
ander (deviation of cloud axis fi-om wind
direction at cloud centroid) all had, as
could be anticipated, some influence.
Also, as might be expected, the wind
velocity was an important influence.

Fig. 5 depicts the extinction co- -

efficient or concentration profile along a
line of sight 1.5 m above ground at 110
m from the source and normal to the
cloud longitudinal axishind direction. It
can be seen that, in this instance, the ac-
tual cloud had a bimodal distributio~



while the Gaussian model, a composite
of 12 separate Gaussian distributions,
depicts a smooth monomodal distribu-
tion. (Since
known, the
the highest
cient). The
reproduce
tion.

the source strength was un-
Gaussian was norndzed  to
measured extinction coeffi-
ANN model, however, did
the bimodal distribu-
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Fig. 5. Distribution of predicted and
measured extinction coefficients along a
line of sight 110 m from the source and
normal to the cloud, 1.5 m above ground
for a composite RP/metal flake cloud
fi-om a 12 grenade volley.

Conclusion

From the work reported, a num-
ber of conclusions can be drawn. The
data available from the DREV trials are
incomplete. The grenade compositions
and values of a number of meteorological
parameters were not available from the
trial reports. This limited both the ability
to compare different grenades and to
provide a full input space to train neural
networks.

On the limited data set examined,
the ANN model provided better predic-
tions than the Gaussian plume model
(whic~ in tu~ was better than the

Gaussian puff model). Finally, the LCM
has been found to provide time-sensitive
spatial aerosol concentration distribu-
tions within clouds.

Future work being planned in-
cludes trials involving single grenades
(both L8 type RP and inert simulations of
M76 type metal flake) to ensure that the
LCM laser signal is not extinguished by
the cloud, i.e., that signals are received
from throughout the cloud, and to permit
comparison with COMBIC (Combined
Obscuration Model for Battlefield In-
duced Contarninants),17  a Gaussian-based
code developed by the U.S. Army Re-
search Laboratory.
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